Fluids

Pressure exerted by a liquid

$$p = \rho g h$$

Up/Down accelerating container

$$p = \rho g_{eff} h$$

Horizontal accelerating container

$$\tan\theta = \frac{a}{g}$$

Pascal's Law

The increase in pressure at a point in the enclosed liquid in equilibrium is transmitted equally in all directions in the liquid.

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

Here P1 = P2

Relative Density

(Specific Gravity) ρ_l = density of liquid

 ρ_w = denisty of water

$$\frac{\rho_l}{\rho_w}$$

Density of a Mixture of Substances

For Same Mass

For Same Volume

$$\rho_M = \frac{2\rho_1\rho_2}{\rho_1 + \rho_2}$$

$$\rho_{\rm M} = \frac{2\rho_1\rho_2}{\rho_1 + \rho_2} \quad \rho_{\rm M} = \frac{\rho_1 + \rho_2}{2}$$

Archimedes Principle

When a body is partially or fully immersed in a liquid, it loses some of its weight and it is equal to the weight of the liquid displaced by the immersed part of the body.

Buoyancy

v = volume of submerged solid ρ = density of the liquid

$$F = v \rho g$$

Hydrodynamics

Equation of Continuity

If a liquid is flowing in streamline flow in a pipe of non-uniform cross-sectional area, then rate of flow of liquid across any cross-section remains constant.

$$av = \text{constant}$$

 $a_1v_1 = a_2v_2$

Bernoulli's Theorem

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}$$

If an ideal liquid is flowing in streamlined flow, then total energy, i.e. sum of pressure energy, kinetic energy and potential energy per unit volume remains constant at every cross-section of the tube.

Velocity of Efflux

$$v = \sqrt{2gh}$$

h = depth of orifice below the free surface of liquid

Time required to make the tank empty

$$t = \frac{A}{A_0} \sqrt{\frac{2H}{G}}$$

Viscous Force (Viscocity)

 $\frac{dv}{dx}$ = velocity gradient A = area of cross-section η = coefficient of viscocity

$$F = -\eta A \frac{dv}{dx}$$

Stoke's Law

When a small spherical body falls in a liquid column with terminal velocity, then viscous force acting on it is

$$F = 6\pi \eta r V_T$$

Terminal Velocity

 ρ = density of liquid

Terminal Velocity
$$\sigma$$
 = density of object
 $V_T = \frac{2r^2(\sigma - \rho)}{9\eta}g$

 $\sigma < \rho$: Body falls

 $\sigma > \rho$: Body moves up

Rate of Volume Flow through Pipe (Poiseuille's Formula)

$$Q = \frac{\pi \Delta \rho r^4}{8\eta l}$$

Surface Tension

Surface Tension

$$S = \frac{F}{l} = \frac{E}{A}$$

= Force per unit length.

= Energy per unit area

Surface Energy

$$\Delta E = S\Delta A$$

Work done in Splitting a Bigger drop into n smaller Droplets When n liquid drop coalesce to form one drop

 $W = 4\pi SR^2(n^{1/3} - 1)$

 $Loss \% = \left(\frac{1}{n^{1/3}} - 1\right) \times 100$

Percent Loss in Energy

Excess Pressure inside a
Liquid Drop

$$P_i - P_0 = \frac{2S}{R}$$

Excess Pressure inside a Soap Bubble

$$P_i - P_0 = \frac{4S}{R}$$

Radius of Interface in Double Bubble

$$\frac{1}{R} = \frac{1}{R_1} - \frac{1}{R_2}$$

Radius under isothermal condition two bubble coalesce

$$r = \sqrt{r_1^2 + r_2^2}$$

$$h = \frac{2S\cos\theta}{r\rho g}$$

Ascent of Liquid in a Capillary Tube